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1. Introduction

When two immiscible fluids flow through a pipe, differ-
ent flow regimes may occur, depending on the flow rate of
each individual fluid, on the pipe inclination angle, and on
the fluid properties. Air–water flows have been widely stud-
ied because they have many applications in chemical, oil,
and energy industries. Among the others, a possible flow
pattern is represented by the intermittent regime that can
be divided into plug flow or elongated bubble flow and slug
flow – see Paglianti et al. (1996) and Bertola (2003). With-
out entering into the details of all possible flow patterns,
intermittent flow is characterized by the alternation of large
bubbles flowing over a thin liquid film and by liquid slugs,
that may contain (or not) small gas bubbles. The distinc-
tion between slug and plug flow is an interesting research
topic – see for instance Drahoš et al. (1996) – but it is
beyond the scope of this paper and, therefore, we will use
alternatively the terms slug or intermittent flow.

Intermittent flows are intrinsically unsteady and they
have a particular structure, neither periodic in time nor
in space, that complicates their investigation. The intermit-
tent behaviour, i.e. the alternating between air and water,
causes high pressure and flow rate fluctuations, so that
an extremely careful design of the pipeline components is
required. Moreover, the low-frequency fluctuations may
be in resonance with the characteristic frequency of the
pipeline, causing severe damages if not taken into account.
The correct prediction of the slug frequency (or alterna-
tively of the slug length) is essential in many practical appli-
cations such as the design of gas traps in pipeline facilities.

From another viewpoint, the slug frequency is an input
parameter of all the existing slug flow models.
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Many efforts have been devoted to the investigation of
the statistical properties of intermittent flows, unfortu-
nately most of the correlations is essentially empirical
and expresses the averaged slug frequency (or averaged
slug length) as a function of the superficial velocities of
the two-phases. Attempts to predict theoretically the slug
frequency have been carried out. Later, those models have
been improved, but closure relations are still needed. A
review of slug flow is provided by Fabre and Liné (1992).

In absence of a complete mathematical description of
the slug flow, the alternating behaviour must be accounted
for by statistical measurements. Considerable amount of
work has been carried out to investigate the statistical
properties of intermittent flows, see for instance van Hout
et al. (2001, 2002, 2003). In the determination of the statis-
tical properties of slug flows, fibre optical probes, imped-
ance or resistive probes are used. Both kind of probes are
in some sense binary since they distinguish between water
and air, giving the so called phase density function Pk(x, t)

P kðx; tÞ ¼
1; x 2 Xk

0; x 62 Xk;

�

where Xk is the geometrical domain occupied by phase k

with k = gas, liquid; x is the probe location and t is the
time. A part of a typical signal is represented in Fig. 1; as
can be seen, this is a binary signal and some post-process-
ing is needed to extract the statistical properties of the flow.
Rigorously speaking, the signal out of an impedence or an
optical probe belongs to a special kind of signals: the so
called categorical-valued time series, i.e. it is a signal that
distinguishes among a finite set of possible states. Accord-
ingly, the phase density function is a mapping that maps a
state (water or air) into a number (0 or 1). Since after the
mapping we have a time function defined on [0,T], we look
at those post-processing techniques used in time series
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analysis that allow to characterize the alternating between
air and water passage.

The easiest technique to describe the alternation
between air and water consists in counting the number of
slugs per unit time, as proposed by Hubbard (1965), or
taking the reciprocal of the mean time delay between two
consecutive slugs, as proposed by Ferré (1979). It can be
shown that the two definitions are completely equivalent.
The result of this post-processing is called average fre-
quency �f ; �f is defined as the number of bubble noses Ns

pierced by the probe during the measurement interval T,
so that �f ¼ N s=T . Operatively, on the signal shown in
Fig. 1, this technique consists in counting the number of
times the signal switches its value from 0 to 1 during the
observation window [0,T].

Since the probability distribution function (PDF) of the
delay between a nose and the subsequent is not symmetric
(see for instance Fig. 1), the mean value is not a good
parameter to describe such a distribution. Note that the
average of such a distribution is the mean frequency �f as
defined by Ferré (1979). Slug unit duration is computed
by evaluating the time between two consecutive switches
from 0 to 1 and then the PDF is computed (Fig. 1 gives
an example of such a distribution).

Recently, another method has been proposed: it consists
in carrying out a Fourier analysis of the signal, see Drahoš
et al. (1996). The use of Fourier spectrum to detect the peri-
odicity of a signal was originally proposed by Schuster
(1898) who argued that the peak of the power spectral den-
sity (PSD) indicates the most important harmonic compo-
nent fF of the signal; fF is not necessarily the same as the
mean frequency estimated with the average method. The
determination of the most probable frequency, based on
the Fourier analysis, corresponds to the decomposition of
the signal into a set of sinusoidal and co-sinusoidal wave-
forms and, implicitly, there is the assumption that the signal
is a sum of sinusoidal functions; associated to that, there is
the concept of frequency that implies some periodicity
within the signal.
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Fig. 1. Example of one-poi
Fourier analysis introduces the difference between mean
frequency and most probable frequency, but it has the dis-
advantage to assume somehow a periodic signal made up
as a combination of smooth and continuous periodic com-
ponents. Actually, as already noted by Fabre and Liné
(1992) by reducing intermittency to periodicity, the actual
very complex flow structure is simplified to an equivalent
cell consisting of a long bubble followed by a liquid slug.
So, instead of trying to interpret the slug dynamics by
means of a basis of periodic functions, a basis of aperiodic
functions can provide a better representation. In the pres-
ent paper, we assess the analysis of the signal by means
on an alternative basis: the Walsh functions. Walsh func-
tions are binary, aperiodic, and are classified according to
their sequency. The concept of sequency, defined later,
characterizes an alternating behaviour without assuming
any periodicity.

It is worth noting that out of the signal shown in Fig. 1,
it is possible to obtain the PDF concerning the time dura-
tion of both bubble and liquid slug. This post-processing
approach provides a detailed information on the flow
regime, see van Hout et al. (2002). However, the advantage
of either Fourier or Walsh analysis is to provide a straight-
forward way to characterise the flow structure; in addition,
the simple models used to compute pressure drops and
in situ hold-up require as input a characteristic frequency
and not PDFs (either of the bubble or of liquid slug).

Aim of this paper is to introduce to fluid dynamic com-
munity the Walsh transform as the proper tool to describe
and analyze intermittent flow regimes without assuming
any periodicity. Furthermore, the possibility to reliably
predict the dynamics of slug arrival is essential in practical
applications such as the design of gas traps.

In Section 2, some examples of slug flow signals are ana-
lyzed. To those signals, we first apply spectral Fourier anal-
ysis and then we apply Walsh spectral analysis and the
results are compared quantitatively. Conclusions are given
in Section 3. A brief review of Walsh functions and Walsh
transform is given in Appendix A.
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2. Comparison between Fourier and Walsh analyses

As previously mentioned, there are many physical situa-
tions in which time series cannot be thought as the super-
position of well-separated sinusoids and co-sinusoids. For
instance, if the process of interest is discrete or categori-
cal-valued in some finite set (such as square waveforms
between 0 and 1) then it makes little sense to correlate
the data with smooth sines and cosines. As an alternative,
it is suggested that the spectral analysis of time series that
contain sharp discontinuities is conducted in the sequency
domain by the Walsh transform – see Morettin (1981).
An example of Walsh functions is given in Fig. 2. A brief
review of Walsh analysis is reported in Appendix A. Note
that Walsh functions are not strictly aperiodic, but at
certain sequencies they show a periodic behaviour (as the
function of order 2, for instance). So Walsh functions are
able to catch both periodic and aperiodic dynamics. This
seems to be a natural alternative to the usual Fourier anal-
ysis since the Walsh transform is based on square-wave
Walsh functions. This approach enables to study data in
terms of square waves and sequency (switches per unit
time) rather than sine waves and frequency (cycles per unit
time). Beauchamp (1975) demonstrated that where a signal
is derived from a sinusoidally based waveform, Fourier
analysis is relevant, while where the signal contains sharp
discontinuities and a limited number of levels (as in our
case), Walsh analysis is the most appropriate tool.

In this section, we compare Fourier and Walsh analyses
for TTL-type signals arising from two-phase intermittent
flow. First, the comparison is carried out on a synthetic
signal artificially generated to mimic a typical one-point
binary probe. As second step, we apply both spectral
analysis to two real one-point optical probe signal; in
this case, a comparison between Fourier analysis and
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Fig. 2. Walsh functions ordered
Walsh analysis is carried out computing the mean
square error between the reconstructed signal and the
original one.

2.1. Analysis of a synthetic signal

An artificial signal is generated starting from a periodic
square wave of frequency 13 and one of frequency 37. The
two signals have been multiplied so that the resulting signal
is binary and, even if it is originated from two periodic
functions, it shows no periodicity at all. Note that, since
the signals have values either equal to 0 or to 1, the multi-
plication is performed by following the dyadic rules – see
Beauchamp (1975). So we can not expect that, as occurs
for harmonic functions, the product of two functions with
frequency f1 and f2 will result in a signal corresponding to
the sum of two periodic functions with frequencies f1 + f2

and f1 � f2. A part of this signal is represented in Fig. 3
for similarity to the real signals that are analysed in the
next section; the synthetic signal upon which Fourier and
Walsh analyses are performed is made up of 1.8 Msample
with a sampling frequency of 2 kHz.

Fourier spectrum is computed by the well-known Welch
method. Roughly speaking, this method consists in split-
ting the signal into shorter windows (actually eight win-
dows), overlapped by 50%, and then computing the
spectrum corresponding to each window. To each signal
window, a Hamming filter is applied prior to computing
the Fourier transform. The Fourier transform is computed
by the standard FFT package provided by the software
MATLAB�. The obtained spectra are ensemble averaged
to compute the spectrum of the whole signal. Also Walsh
spectrum was obtained by a similar technique, i.e. splitting
the signal into eight windows overlapping by 50% and after
Hamming-filtering, the Walsh transform is applied. The
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Fig. 3. Comparison between Fourier spectrum and Walsh spectrum for a synthetic signal built upon two square wave between 0 and 1 with frequency 13
and 37. Note that Walsh spectrum clearly points to the two components of the signal, while Fourier analysis predicts a dominant frequency at 2 Hz.
Average frequency is at �0.1 Hz.
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ensamble averge of the resulting spectra provides a consis-
tent estimator of the Walsh spectrum for the initial signal,
Morettin (1981). The Walsh transform was computed by
the so called Fast Walsh Hadamard Transform (FWHT)
following the implementation described in Ahmed and
Rao (1975).

The average frequency �f ¼ N s=T is �f ¼ 0:098 � 0:1 Hz.
The most probable frequency – fF – estimated as the fre-
quency corresponding to the peak in the power spectral
density (see Fig. 3) is 2 Hz. If one uses the method proposed
by Schuster (1898) the results are not correct and lead to a
poor modelling of the phenomenon. A second glance at the
Fourier spectrum shows that two secondary peaks appear
at frequency 13 Hz and 37 Hz. So Fourier analysis detects
somehow the right spectral components, however they are
not recognized as dominant. Furthermore, from Fourier
analysis one is induced to think that the original signal is
somehow periodic since the sum of sinusoidal waves (with
frequencies 2, 13, and 37) is a periodic function.

Walsh spectrum shows two dominant sequencies (with
exactly the same value) at k1 = 13 zps and k2 = 37 zps,
indicating the two Walsh functions that have the same
zero crossings as the original basic components in addi-
tion to that neither Walsh function of the order 13 or
of the order 37 are periodic, so one is not induced to
interpret the original signal as periodic. Walsh analysis
appears as a reliable tool to interpret intermittent, but
not periodic, signals as the ones occurring in two-phase
slug/plug flows. As wished by Fabre and Liné (1992),
Walsh analysis is able to give a consistent representation
of an alternating behaviour without reducing it to peri-
odic analysis.
In this case, it can be concluded that Walsh analysis is a
more suitable tool to post-process this kind of binary
signals. Both average frequency �f ¼ 0:1 Hz and most prob-
able frequency fF = 2 Hz provide a misleading character-
ization of the signal. For instance, if the final aim of such
statistical measurements is to design a gas-trap for a pipe-
line facility, Fourier analysis would predict two gas slug
arrival per second which is, of course, not correct.

2.2. Analysis of a real signal

While for the synthetic signal analysed earlier, the most
appropriate post-processing tool can be easily indicated,
for a real signal the determination of the best tool is not
so trivial. Since the probe signal assumes only values 0 or
1 and it presents sharp discontinuities, Walsh functions
seem to be a more suitable basis than sinusoidal and co-
sinusoidal functions. This observation is, however, subjec-
tive and needs to be supported by a quantitative argument.
Actually, at the end of this paragraph a more objective way
to estimate the goodness of one transform respect to the
other is introduced and applied.

Fourier and Walsh spectral analyses are carried out for
two signals out of one point optical probe obtained by
Arosio and Guilizzoni (2006). These data sets represent
the temporal evolution of the phase density function for
an air–water flow in a horizontal pipe for two different flow
rates. In both cases, the sampling frequency is fs = 2 kHz
and the authors collected 1.8 Msamples. The first signal
is obtained with air superficial velocity ja = 0.3 m/s and
water superficial velocity jw = 0.9 m/s. The second signal
is obtained with air superficial velocity ja = 1.8 m/s and
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water superficial velocity jw = 2 m/s. In both cases the pipe
inner diameter is 8 cm.

The computed averaged frequency for the first data set is
�f ¼ 0:25 Hz while for the second data set �f ¼ 3:24 Hz.
Slug duration PDF is provided in Fig. 1 for the first
data set; as expected, such distribution is well-approxi-
mated by a log-normal function – see Fig. 1; being the
PDF not symmetrical around its mean, the average has lit-
tle sense.

Fourier and Walsh spectra, shown in Fig. 4, are com-
puted following the procedure described in the previous
section.

For the first signal, the dominant frequency fF is 0.31 Hz
while there are two dominant sequencies at k1 = 1.1 zps
and at k2 = 1.34 zps, see Fig. 4. It is also evident that while
Fourier spectrum shows a broad range of energetic modes
around the dominant value, Walsh spectrum shows very
clearly some secondary peaks at well defined sequency val-
ues. Fourier spectral analysis seems to indicate that most of
energy content of the signal is under 1 Hz, while in Walsh
analysis peaks are better indicated and spread over a larger
sequency range. From a qualitative viewpoint, this result
recalls the one obtained for the artificial signal analyzed
in the previous paragraph where the dominant frequency
0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Modes (n)

M
S

E
(n

)
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jw = 2 m/s.
is greatly underestimated. Different peaks are present hav-
ing values of the order of the maximum. Walsh analysis
seems to suggest that slug dynamics is much more complex
than a simple periodic motion. The resulting dynamics, fur-
thermore, does not show a periodic pattern contrary to
what Fourier analysis would suggest.

For the second signal, the dominant frequency fF is
fF,1 = 1.05 Hz (and a secondary frequency at fF,2 = 0.8 Hz)
while the dominant sequencies are at k1 = 2.48 zps and
k2 = 3.52 zps, see Fig. 4. This data set shows a more com-
plex behaviour. Two peaks of comparable amplitude
appear in Fourier analysis and the relevant sequencies in
Walsh spectrum are more numerous. Both post-processing
tools reveal a complex dynamics. From Fourier analysis, it
can be seen that the energetic modes are in the range 0–
2 Hz, while as in the previous case Walsh analysis is able
to better pinpoint the important sequencies.

To quantitatively compare the two tools, the analysis of
the MSE as function of the first n significant modes is car-
ried out. This method consists in comparing the mean
squared error (MSE) of the signal reconstructed by the first
n most energetic modes – ~xðnÞ – respect to the original signal
x; this method was proposed by Kolmogorov (1941). In
other terms, from the spectrum the n most significant modes
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(most energetic) are chosen and the inverse transform algo-
rithm is applied. The reconstructed signal is compared with
the original one, and the mean squared error is computed as

MSE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN�1

j¼0

xj � ~xðnÞj

h i2

vuut ; ð1Þ

where ~xðnÞj represents the value of the signal reconstructed
upon the first n energetic modes evaluated at instant j. N
is the total number of sample. For a given number of
modes n, the decomposition that better represents the sig-
nal, and hence that it is better suited for its analysis, is
the one for which the MSE is lower. Such analysis is sum-
marized in Fig. 5. This figure clearly demonstrates that
Walsh functions provide a lower MSE than the Fourier
ones for a given value of n. This has to be interpreted that
each Walsh function carries more information about the
signal than the corresponding Fourier analysis. This con-
clusion holds both for the case of not aerated liquid slug
(Fig. 5-left) and for the case of aerated liquid slug
(Fig. 5-right). As expected, increasing the value of n the dif-
ference decreases since – being both basis complete – they
perfectly match the original signal as n!1.

3. Discussion and conclusion

In this paper, a method to characterize the alternating
between air and water in intermittent flows without assum-
ing any periodicity is proposed: the Walsh spectral analy-
sis. It has been shown that Walsh analysis can provide a
good alternative to Fourier analysis for binary time series.
Since Walsh analysis is a mathematically sound method to
describe intermittent, but not periodic, signals we believe
that, even if Fourier analysis leads to more intuitive results,
Walsh functions represent a more natural frame within
which interpret intermittent flows. A part from the aca-
demic viewpoint, the alternating behaviour appears more
efficiently described by the Walsh function also an applica-
tion viewpoint especially if the aim is to characterize the
slug dynamics to correctly design the gas traps. It is evident
from both synthetic signals and real ones that the slug arri-
val is correctly predicted neither by the mean frequency nor
by the Fourier spectrum. We have tested Walsh analysis
both on artificial signals and on real ones and in both cases,
Walsh analysis proved to be more informative than Fourier
analysis.

A very common pitfall when using any kind of trans-
form for data analysis is to forget the presence of the ana-
lyzing functions in the transformed field and, then, to
interpret the features of the analysing functions as charac-
teristics of the phenomena under study. If Fourier analysis
is used for the signal proposed here, one has to remember
that sines and cosines functions do have a period – and
hence have a frequency – while the binary signal is not nec-
essarily periodic. So, Fourier analysis may be misleading in
the sense that one is induced to think that is the signal to be
periodic. To reduce the risk of a misinterpretation of the
phenomena, the analyzing function has been chosen
according to the structure of the signal to be analyzed.
For the signal out of a binary probe, the elementary object
is a square wave and then Walsh functions are closer to
that form than Fourier functions.

As final remark, it is worthwhile noting that other meth-
ods have been used to characterize the dynamical behav-
iour of an intermittent flow. Some authors – see Drahoš
et al. (1996) – used dynamical pressure time series to extract
information on the flow behaviour. The application of dif-
fusional analysis, Giona et al. (1994), and of the methods
belonging to the analysis of the deterministic chaos, Dra-
hoš et al. (1996), has been proposed and successfully
applied. Even if all those methods look rather different
compared to the one proposed here, and compared among
themselves, they all have the same spirit: the dynamical
characterization of an intermittent flow. Since intermittent
flows have a very complex dynamical behaviour, a careful
interpretation can be performed only by joining all the pos-
sible tools of analysis to tackle the problems from different,
but complementary, sides.
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Appendix A. Brief review of Walsh functions and Walsh

transform

Rigorously speaking – see Morettin (1981) and Kohn
(1980) – the Walsh functions W(n, t), for n = 1,2, . . . and
t 2 [0,1) are defined as

1. W(0, t) = 1 for t 2 [0,1),
2. if n, positive integer, has the dyadic expansion

n ¼
P1

i¼0xi2
i, with xi = 0 or xi = 1, and xi = 0 for

i > mr, then

W ðn; tÞ ¼
Yr

i¼0

frmiðtÞg; ð2Þ

where m1 . . .mr correspond to the coefficients xmi ¼ 1
and where {rk(t)} are the Rademacher functions, see
Morettin (1981).

Walsh functions form an orthonormal basis on [0,1)Z 1

0

W ðn; tÞW ðm; tÞdt ¼ dnm ð3Þ

furthermore such basis is also complete. While the sinusoids
in the Fourier analysis are distinguished by their frequency
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of oscillation n in terms of the number of complete cycles
they make in the interval 0 6 t < 1, the Walsh functions
are distinguished by the number of times n that they switch
signs in the unit interval. Since the Walsh functions are ape-
riodic, the value n in the notation W(n,t) cannot be called
frequency as in the case of periodic sinusoid. Harmuth
(1969) introduced the term sequency to describe the general-
ized frequency and to distinguish those functions, such as
the Walsh functions, that are not necessarily periodic. Har-
muth (1969) noted that the frequency parameter n in the
sinusoids – sin(2pnt) – may also be interpreted as one half
the number of zero crossings or sign changes per unit time.
In analogy to the relationship of frequency to the number of
zero crossing or sign changes in periodic functions, Har-
muth-sequency is defined has one half the number of zero
crossing per unit time – this concept can be applied to ape-
riodic functions as well as periodic functions; furthermore,
Harmuth-sequency coincides with the frequency for a sinu-
soidal function and, hence, the concept of sequency can be
seen as a generalization of the concept of frequency. While
frequency is measured in cycles per second (Hz), sequency is
measured in zero crossing per second (zps).

If the function f(t) is defined between 0 and 1 with per-
iod 1, so that t 2 [0,1), and if it is Lebesgue integrable in
[0,1) then it can be expanded in Walsh series

f ðtÞ �
X1
n¼0

anW ðn; tÞ ð4Þ

with coefficients defined as

an ¼
Z 1

0

f ðtÞW ðn; tÞdt n ¼ 0; 1; . . . ð5Þ

The Walsh transform of a function f(t) 2 L2(0,1) is
defined as

dðnÞ ¼
Z 1

0

f ðtÞW ðn; tÞdt: ð6Þ

Walsh functions have several properties that are
described in detail by Kohn (1980) and Morettin (1981);
so the interested reader is suggested to look up these
references.

The Walsh transform of X(0), X(1) ,. . . ,X(N � 1) is

dN ðkÞ ¼ N�1=2
XN�1

t¼0

X ðtÞW ðt; kÞ; 0 6 k < 1: ð7Þ

The signal X(t) can be represented as the superposition of
Walsh functions at various sequencies,

X ðtÞ ¼
Xq

j¼1

AðjÞW ðt; kjÞ; ð8Þ

where A(j) are mutually uncorrelated random variables.
Eq. (8) is called the inverse discrete Walsh transform.
The Walsh periodogram of data X(0), X(1) ,. . . ,X(N � 1)
is defined as

IW ðkjÞ ¼ N�1=2
XN�1

t¼0

X ðtÞW ðt; kjÞ
" #2

ð9Þ

where kj is a sequency of the form kj = j/N, where j indi-
cates the switches per N times points. The Walsh periodo-
gram is essentially the squared correlation of the data with
the Walsh functions. Similarly to Fourier analysis, it is pos-
sible to plot IW(kj) as function of kj to inspect for peaks
implicitly extending the method proposed by Schuster
(1898). The term being squared in Eq. (9) is called Walsh
transform of data X(t) and it is indicated as dN(k). Hence,
a consistent estimate of the Walsh spectrum, f(k) is simply
the average of the Walsh periodogram, Eq. (9).
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